Local Convergence of Two Fifth Order Algorithms with Hölder Continuity Assumptions

نویسندگان

چکیده

In order to estimate the solution of zero for nonlinear systems, we conduct local convergence investigation in this paper. contrast Lipschitz condition used preceding study, have Hölder continuity requirement. Additionally, use a derivative approximation take free iterative technique with same order. A computed radius balls based on constant is also provided. No Taylor's series higher Fréchet derivate investigation. To broaden relevance our work, comparison ball radii This highlights uniqueness

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Multi-armed Bandits with Hölder Continuity

Standard Multi-Armed Bandit (MAB) problems assume that the arms are independent. However, in many application scenarios, the information obtained by playing an arm provides information about the remainder of the arms. Hence, in such applications, this informativeness can and should be exploited to enable faster convergence to the optimal solution. In this paper, formalize a new class of multi-a...

متن کامل

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

On Hölder-continuity of Oseledets subspaces

For Hölder cocycles over a Lipschitz base transformation, possibly noninvertible, we show that the subbundles given by the Oseledets Theorem are Höldercontinuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichmüller flow on the moduli space of abelian differentials. Following a recen...

متن کامل

An Iterative Method with Fifth-Order Convergence for Nonlinear Equations

In this paper, we suggest and analyze a new four-step iterative method for solving nonlinear equations involving only first derivative of the function using a new decomposition technique which is due to Noor [11] and Noor and Noor [16]. We show that this new iterative method has fifth-order of convergence. Several numerical examples are given to illustrate the efficiency and performance of the ...

متن کامل

On the local convergence of a fifth-order iterative method in Banach spaces

A new predictor-corrector iterative procedure, that combines Newton’s method as predictor scheme and a fifth-order iterative method as a corrector, is designed for solving nonlinear equations in Banach spaces. We analyze the local order of convergence and the regions of accessibility of the new method comparing it with Newton’s method, both theoretical and numerically.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal For Multidisciplinary Research

سال: 2023

ISSN: ['2582-2160']

DOI: https://doi.org/10.36948/ijfmr.2023.v05i03.3805